791. Thermodynamics of Ion Association. Part VI. ${ }^{1}$ Some Transition-metal Sulphates.

By V. S. K. Nair and G. H. Nancollas.

E.m.f.s of cells of the type $\mathrm{H}_{2}, \mathrm{Pt}\left|\mathrm{MSO}_{4}, \mathrm{HCl}\right| \mathrm{AgCl} \mid \mathrm{Ag}$ have been measured by a precision method at temperatures from 0° to 45° and thermodynamic association constants are derived for the formation of $\mathrm{MnSO}_{4}, \mathrm{CoSO}_{4}$, and $\mathrm{NiSO}_{4} . \Delta H, \Delta G$, and ΔS are evaluated for the reaction $\mathrm{M}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightleftharpoons$ MSO_{4}, and these are discussed.

The stability of transition-metal complexes has been discussed by Irving and Williams ${ }^{2}$ who found that for a number of neutral ligands and anions of weak acids, the association constants lie in the sequence $\mathrm{Mn}<\mathrm{Fe}<\mathrm{Co}<\mathrm{Ni}<\mathrm{Cu}>\mathrm{Zn}$. Owing to the lack of temperature-coefficient data, however, all such discussions involve the assumption that the free-energy change is dominated by the heat term and that changes in the entropy of

[^0]${ }^{2}$ Irving and Williams, J., 1953, 3192.
association may be neglected. Both the heat and the entropy term should be considered, and the present investigation extends the available data for sulphates ${ }^{3}$ to those of manganese, cobalt, and nickel. Cells of the type described previously ${ }^{1,3}$
$$
\mathrm{H}_{2}, \mathrm{Pt}\left|\mathrm{HCl}, \mathrm{MSO}_{4}\right| \mathrm{AgCl} \mid \mathrm{Ag}
$$
have been used, and e.m.f.s have been measured at various temperatures between 0° and 45°.

Experimental

"AnalaR" manganese, cobalt, and nickel sulphates were recrystallised three times from conductivity water. Manganese sulphate has a maximum solubility at $54-55^{\circ}$ and solutions prepared at this temperature were evaporated to about two-thirds of the original volume before crystallisation. Recrystallised manganese and cobalt sulphates were converted into the anhydrous forms and stock solutions were prepared as described previously: ${ }^{8}$ analysis for sulphate by precipitation as barium sulphate agreed to within 0.03% of the calculated concentrations. Since anhydrous nickel sulphate dissolves in water only with difficulty, stock solutions were prepared from the hydrated salt and analysed for nickel by precipitation as the dimethylglyoxime. ${ }^{4}$ Duplicated estimations agreed to 0.02%. The apparatus and experimental technique have been described previously. ${ }^{1}$ E.m.f. readings were constant to within $20 \mu \mathrm{v}$.

Results and Discussion

The concentration of hydrogen ions, $m_{\mathrm{H}^{+}}$, in the cell

$$
\mathrm{H}_{2}, \mathrm{Pt}\left|\mathrm{HCl}\left(\mathrm{~m}_{1}\right), \mathrm{MSO}_{4}\left(m_{2}\right)\right| \mathrm{AgCl} \mid \mathrm{Ag}
$$

can be expressed by

$$
-\log m_{\mathrm{H}^{+}}=\left(E-E^{0}\right) / k+\log m_{\mathbf{1}}+\log \gamma_{\mathrm{H}^{+}} \gamma_{\mathrm{Cl}^{-}}
$$

where γ represents activity coefficient, m molalities, and $k=2 \cdot 3026 \boldsymbol{R} T / \boldsymbol{F}$. Using equations for the concentrations of ionic species: $m_{\mathrm{HSO}_{4}^{-}}=m_{1}-m_{\mathrm{H}^{+}}, m_{\mathrm{M}^{2+}}=m_{\mathrm{HSO}_{4}+}+$ $m_{\mathrm{SO}_{4}^{2}}{ }^{-}$, and $m_{\mathrm{mSO}_{4}}=m_{2}-m_{\mathrm{M}^{2+}}$, and the dissociation constant of the bisulphate ion, $k_{2}=a_{\mathrm{H}^{+}} a_{\mathrm{SO}_{4}-/ a_{\mathrm{HSO}}^{4}}-$, we calculated the thermodynamic association constants $K=$ $a_{\mathrm{MSO}}^{4} / a_{\mathrm{M}}{ }^{2+} a_{\mathrm{SO}}^{4}{ }^{2}$ - by the method described previously. ${ }^{3}$ Activity coefficients were obtained from Davies's modification of the Debye-Hückel equation ${ }^{5}$

$$
\log \gamma_{z}=A z^{2}\left[I^{\frac{1}{2}} /\left(1+I^{\frac{1}{2}}\right)-C I\right]
$$

in which $C=0 \cdot 2$. The results are summarized in Table 1 which includes the mean values of K at each temperature.

The association constants at $25^{\circ}, K\left(\mathrm{CoSO}_{4}\right)=230 \mathrm{~kg} . \mathrm{mole}^{-1}$ and $K\left(\mathrm{NiSO}_{4}\right)=211 \mathrm{~kg}$. mole ${ }^{-1}$, are lower than the corresponding values 294 and 250 obtained by Money and Davies ${ }^{6}$ from conductivity measurements: for manganese sulphate, however, our value, 181 kg . mole^{-1} is in good agreement with James's conductimetric value, ${ }^{7} 192 \mathrm{~kg}$. mole ${ }^{-1}$. At 0°, $K\left(\mathrm{NiSO}_{4}\right)=121 \mathrm{~kg}$. mole ${ }^{-1}$ and $K\left(\mathrm{CoSO}_{4}\right)=172 \mathrm{~kg}$. mole ${ }^{-1}$ can be compared with the cryoscopic values, 125 and 111 respectively, obtained by Brown and Prue. ${ }^{8}$ The CoSO_{4} values are rather different and it is noteworthy that the cryoscopic results show small systematic deviations for all the curves in the case of cobalt sulphate. ${ }^{8}$

Heats of association have been derived by use of least squares from the linear plots of $\log K$ against T^{-1} shown in the Figure. Values of $\Delta G, \Delta H$, and ΔS together with mean deviations (calculated by least squares on the assumption that the deviations of the points from the straight lines in the Figure are themselves a measure of the error in ΔH), are

[^1]| | | | ble 1.
 M | E.m.f. me ganese sulp | surement
 ate | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Expt. | | 1 | 2 | 3 | 4 | 5 | |
| | $10^{3} m_{1}$ | | 3.777 | $6 \cdot 122$ | $8 \cdot 679$ | 3.903 | 2.824 | |
| | $10^{3} m_{2}$ | | $2 \cdot 648$ | 5.334 | $4 \cdot 425$ | $7 \cdot 254$ | 12.948 | |
| Temp. | Expt. | $\left(E-E^{\circ}\right)$ | $10^{3} \mathrm{I}$ | $10^{3} \mathrm{~m}_{\text {HsO }}{ }^{-}$ | $10^{3} m_{M^{4+}}{ }^{\text {a }}$ | $10^{3} m_{\text {MSO }}$ 。 | K | K (mean) |
| 0° | 2 | $0 \cdot 24873$ | 23.95 | $0 \cdot 504$ | $4 \cdot 707$ | $0 \cdot 627$ | 101 | |
| | 1 | $0 \cdot 26916$ | 13.15 | $0 \cdot 194$ | $2 \cdot 423$ | 0.225 | 103 | |
| | 3 | $0 \cdot 23188$ | $23 \cdot 48$ | $0 \cdot 590$ | 3.992 | $0 \cdot 433$ | 101 | 103 |
| | 4 | $0 \cdot 27099$ | 27.98 | $0 \cdot 415$ | $6 \cdot 205$ | $1 \cdot 049$ | 101 | |
| | 5 | $0 \cdot 28891$ | 43.53 | 0.435 | $10 \cdot 409$ | 2.539 | 107 | |
| 10° | 1 | 0.27947 | $12 \cdot 75$ | 0.256 | 6.205 | 1.049 | 135 | |
| | 2 | 0.25853 | 23.21 | $0 \cdot 651$ | $10 \cdot 409$ | 2.539 | 129 | |
| | 3 | $0 \cdot 24097$ | 22.97 | 0.761 | 2.373 | $0 \cdot 275$ | 122 | 129 |
| | 4 | $0 \cdot 28185$ | $27 \cdot 13$ | 0.539 | $4 \cdot 602$ | 0.732 | 123 | |
| | 5 | $0 \cdot 30077$ | 41.75 | $0 \cdot 555$ | 3.945 | $0 \cdot 480$ | 134 | |
| 20° | 1 | $0 \cdot 29004$ | 12.53 | 0.346 | $2 \cdot 350$ | $0 \cdot 298$ | 158 | |
| | 2 | $0 \cdot 26863$ | $22 \cdot 43$ | $0 \cdot 852$ | $4 \cdot 505$ | 0.839 | 165 | |
| | 3 | $0 \cdot 25024$ | 22.22 | 0.988 | 3.884 | 0.541 | 154 | 160 |
| | 4 | $0 \cdot 29306$ | 25.97 | $0 \cdot 704$ | $5 \cdot 858$ | $1 \cdot 396$ | 161 | |
| | 5 | 0.31331 | $40 \cdot 21$ | 0.720 | 9.734 | $3 \cdot 214$ | 161 | |
| 25° | 1 | $0 \cdot 29526$ | $12 \cdot 32$ | $0 \cdot 381$ | $2 \cdot 329$ | $0 \cdot 319$ | 176 | |
| | 2 | 0.27359 | $22 \cdot 10$ | 0.927 | $4 \cdot 455$ | $0 \cdot 879$ | 181 | |
| | 3 | $0 \cdot 25457$ | 21.90 | 1.069 | 3.839 | 0.586 | 178 | 181 |
| | 4 | $0 \cdot 29859$ | $25 \cdot 47$ | 0.767 | $5 \cdot 776$ | $1 \cdot 478$ | 178 | |
| | 5 | $0 \cdot 31919$ | 38.79 | 0.770 | $9 \cdot 372$ | $3 \cdot 576$ | 193 | |
| 35° | 1 | 0.30593 | 11.97 | $0 \cdot 473$ | $2 \cdot 287$ | $0 \cdot 361$ | 218 | |
| | 2 | 0.28391 | 21.54 | 1.136 | $4 \cdot 427$ | $0 \cdot 907$ | 204 | |
| | 3 | $0 \cdot 26417$ | 21.32 | 1.288 | 3.799 | $0 \cdot 626$ | 214 | 212 |
| | 4 | $0 \cdot 31014$ | 24.74 | 0.937 | $5 \cdot 668$ | 1.586 | 208 | |
| | 5 | $0 \cdot 33217$ | 37.63 | 0.932 | $9 \cdot 192$ | $3 \cdot 756$ | 218 | |
| 45° | 1 | $0 \cdot 31672$ | 11.60 | 0.511 | $2 \cdot 240$ | $0 \cdot 408$ | 276 | |
| | 2 | $0 \cdot 29427$ | $20 \cdot 68$ | 1.333 | $4 \cdot 307$ | 1.037 | 265 | |
| | 3 | $0 \cdot 27361$ | $20 \cdot 64$ | 1.503 | 3.739 | $0 \cdot 686$ | 269 | 262 |
| | 4 | $0 \cdot 32193$ | 23.83 | 1.112 | $5 \cdot 528$ | 1.726 | 250 | |
| | 5 | $0 \cdot 34552$ | 36.56 | 1.094 | 8.975 | 3.973 | 251 | |

Table 1. (Continued.)
Cobalt sulphate (contd.)

Temp.	Expt.	$\left(E-E^{\circ}\right)$	$10^{3} I$	$10^{3} m_{\text {Hso }}-$	$10^{3} m_{M^{2+}}$	$10^{3} m_{\text {MSO }}$	K	K (mean)
35°	1	0.27569	18.74	1.033	3.478	0.699	250	
	2	0.28267	15.70	0.786	2.829	0.531	260	
	3	0.26837	24.71	1.520	4.877	1.202	255	
	4	0.27869	26.90	1.512	5.735	1.634	247	253
	5	0.29875	16.31	0.720	3.309	0.752	253	
45°	6	0.28655	22.10	1.135	4.626	1.224	251	
	1	0.28571	18.40	1.237	3.490	0.687	271	
	2	0.29280	15.37	0.950	2.836	0.524	279	
	3	0.27839	24.19	1.793	4.876	1.203	284	
	4	0.28937	26.43	1.805	5.768	1.601	261	277
	5	0.30961	15.88	0.870	3.282	0.779	284	
	6	0.29722	21.56	1.352	4.586	1.264	286	

given in Table 2; data for the sulphates of magnesium, zinc, ${ }^{3}$ and calcium ${ }^{9}$ are included for comparison.

The entropy of association can be written in terms of gas and hydration entropies:

$$
\Delta S=\Delta S_{\mathrm{g}}+\Delta S_{\mathrm{hgd}}\left(\mathrm{MSO}_{4}\right)-\Delta \mathrm{S}_{\mathrm{h} d \mathrm{~d}}\left(\mathrm{M}^{2+}\right)-\Delta S_{\mathrm{hyd}}\left(\mathrm{SO}_{4}{ }^{2-}\right)
$$

${ }^{2}$ Bell and George, Trans. Faraday Soc., 1953, 49, 619.

There is considerable uncertainty in the value for the standard entropy of the nickel ion. Latimer ${ }^{10}$ quotes the Bureau of Standards' value, $-38 \cdot 1 \mathrm{cal}$. deg. ${ }^{-1}$ mole ${ }^{-1}$, but points out that such a low value cannot be accepted in comparison with $S^{\circ}\left(\mathrm{Fe}^{2+}\right)$ and $S^{\circ}\left(\mathrm{Cu}^{2+}\right)$ even though there may be considerable divergence in the multiplicity of the ground states.

Plots of $\log K$ against T^{-1} for (1) nickel sulphate, (2) manganese sulphate (left-hand ordinates), and (3) cobalt sulphate (right-hand ordinate).

Staveley and Randall ${ }^{11}$ consider -23 cal . deg. ${ }^{-1}$ mole $^{-1}$ to be more reliable and we have used the latter value together with -22 cal . deg..$^{-1} \mathrm{~mole}^{-1}$ for the standard entropy of the cobalt ion. ${ }^{11} \Delta S_{\mathrm{hyd}}\left(\mathrm{MSO}_{4}\right)$, calculated as described previously, ${ }^{3}$ is given in Table 3.

Table 2. Thermodynamic properties.

Reaction	$\begin{gathered} \Delta H \\ (\text { kcal. mole } \end{gathered}$	$\underset{\text { (kcal. } \mathrm{mole}^{-1} \text {) }}{\Delta G_{298}}$	$\underset{\text { cal. deg. } \left..^{-1} \text { mole }^{-1}\right)}{\Delta S}$
$\mathrm{Mn}^{2+}+\mathrm{SO}_{4}{ }^{2-}$	3.37 ± 0.31	-3.07 ± 0.02	22.6 ± 1.0
$\mathrm{Co}^{2+}+\mathrm{SO}_{4}{ }^{2-}$	1.74 ± 0.16	-3.21 ± 0.02	16.6 ± 0.5
$\mathrm{Ni}^{2+}+\mathrm{SO}_{4}{ }^{2-}$	3.31 ± 0.20	-3.16 ± 0.03	21.7 ± 0.7
$\mathrm{Zn}^{2+}+\mathrm{SO}_{4}{ }^{2-}$	4.01 ± 0.55	-3.25 ± 0.02	$24.4 \pm 1 \cdot 8$
$\mathrm{Mg}^{2+}+\mathrm{SO}_{4}{ }^{\text {2- }}$	4.84 ± 0.40	-3.07 ± 0.03	$26.2 \pm 1 \cdot 3$
$\mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{2-}$	1.65士 0.20	-3.15 ± 0.03	$16 \cdot 1 \pm 0 \cdot 8$

Table 3. Thermodynamic properties.

Ion pair	$\begin{gathered} S_{\mathrm{g}}\left(\mathrm{MSO}_{4}\right) \\ \text { (cal. deg. } .^{-1} \mathrm{~mole}^{-1} \text {) } \end{gathered}$	$\begin{gathered} \Delta S \\ \text { (cal. } \mathrm{deg} .^{-1} \mathrm{~mole}^{-1} \text {) } \end{gathered}$	$\begin{gathered} S^{\circ}\left(\mathrm{MSO}_{4}\right) \\ \text { (cal. deg. } \left..^{-1} \mathrm{~mole}^{-1}\right) \end{gathered}$	$\begin{aligned} & -\Delta S_{\mathrm{hyd}}\left(\mathrm{MSO}_{4}\right) \\ & \text { (cal. deg. } \left..^{-1} \mathrm{~mole}^{-1}\right) \end{aligned}$	$\begin{gathered} \gamma_{+}^{+1} \\ \left(\AA^{-1}\right) \end{gathered}$
$\mathrm{MnSO}_{4} \ldots$	$70 \cdot 1$	$22 \cdot 6$	6.7	$63 \cdot 4$	1.28
CoSO_{4}.	$70 \cdot 2$	16.6	-1	71	$1 \cdot 35$
NiSO_{4}	$70 \cdot 2$	$21 \cdot 7$	3	67	$1 \cdot 37$
ZnSO_{4}	$70 \cdot 3$	$24 \cdot 4$	$3 \cdot 0$	$67 \cdot 3$	1.39
MgSO_{4}	$68 \cdot 2$	$26 \cdot 2$	$2 \cdot 1$	$66 \cdot 1$	$1 \cdot 52$
$\mathrm{CaSO}_{4} \ldots$	69.5	$16 \cdot 1$	$7 \cdot 0$	$62 \cdot 5$	1.01

An attempt to correlate the thermodynamic data with various properties of the metal ions such as electronegativity and ionization potential showed no obvious relationship. The Irving-Williams order of stability ${ }^{2}$ observed with a large number of neutral ligands and anions of weak acids, will be expected to hold only when the ligands interact with protons more strongly than does water. The association constants for the sulphate ion pairs are closely similar and the proton complex with this ligand is less stable than the $\mathrm{H}_{3} \mathrm{O}^{+}$ion. Indeed, with cobalt and nickel sulphates, the Irving-Williams order is reversed.

The most frequently applied correlation involves the entropy of association and some function of the radii of the ions. It is important in this connection to consider, if possible,

[^2]only the hydration entropies of the complex ions when applying these methods since, in general, complex ions will contain different translational and rotational terms. Also the variable $\Delta S_{\mathrm{hyd}}\left(\mathrm{M}^{2+}\right)$ term should be eliminated since this itself varies linearly with $r_{+}{ }^{-1}$. Inspection of Table 3 indicates that there is a general increase in $-\Delta S_{\text {hyd }}\left(\mathrm{MSO}_{4}\right)$ with $r_{+}{ }^{-1}$ in going from manganese to nickel and zinc but the value for cobalt appears to be anomalous. Until more reliable estimates are available for the standard entropies of nickel and cobalt ions, it is not possible to carry the comparison any further.

[^3]
[^0]: 1 Part V, Nair and Nancollas, J., 1958, 4144.

[^1]: ${ }^{3}$ Nair and Nancollas, Part IV, $J ., 1958,3706$.
 ${ }^{4}$ Vogel, " A Text Book of Quantitative Analysis," Longmans, London, 1947.
 ${ }^{5}$ Davies, J., 1938, 2093.
 ${ }^{6}$ Money and Davies, Trans. Faraday Soc., 1932, 28, 609.
 7 James, Ph.D. Thesis, London, 1947.
 ${ }^{8}$ Brown and Prue, Proc. Roy. Soc., 1955, A, 232, 320.

[^2]: ${ }^{10}$ Latimer, " Oxidation Potentials," Prentice-Hall, New York, 1952.
 ${ }^{11}$ Staveley and Randall, Discuss. Faraday Soc., 1958, 28, 157.

[^3]: The University, Glasgow, W.2.
 [Received, May 14th, 1959.]

